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Abstract
We extend the N -soliton solutions of the Kaup–Kupershmidt equation on a
nonzero background decreasing as (x + 1/a)−2. These new solutions describe
the interaction of N solitary waves with a static bell-shaped wave. We give the
conditions so that the Bäcklund transformation relating those solutions and the
N -solitons of the Sawada–Kotera equation will be satisfied.

PACS numbers: 0230I, 0220, 4520J

1. Introduction

The Kaup–Kupershmidt (KK) equation [1]

KK(u) ≡ ut +

(
uxxxx +

30

α
uuxx +

45

2α
u2
x +

60

α2
u3

)
x

= 0 (1)

is connected to the Sawada–Kotera (SK) equation [2]

SK(u) ≡ ut +

(
uxxxx +

30

α
uuxx +

60

α2
u3

)
x

= 0 (2)

by the Miura transformation [3]

f f̃xx − 4fxf̃x + 4fxxf̃ = 0 (3)

with uSK = α∂2
x log f , uKK = α

2 ∂
2
x log f̃ .

These two equations are completely integrable: they both possess a third-order Lax
pair [1], can be written in bilinear form [4, 5] and are related by reduction to autonomous [6]
and nonautonomous [7] Hamiltonian systems of the Hénon–Heiles type. However, there are
more difficulties in building the KK solutions than the SK ones.

From the bilinear form of SK, which involves only one Hirota field [8], it is easy to deduce
the bilinear Bäcklund transformation (BT) [4] and to reproduce the expression of theN -soliton
solution described by a single interaction parameter like other KdV-like equations. Its soliton
tau function, obtained by reduction of the BKP hierarchy, can be expressed as a Pfaffian [9,10].
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The bilinear form of KK, involving two Hirota fields, has not yet provided a bilinear BT
which can be linearized in the appropriate way and which could lead to a valuable induction
process for constructing the N -soliton solutions [11–13]. However, these difficulties have
been overcome by establishing the nonlinear superposition formula (NLSF) for KK [14] from
its BT [15] obtained by singularity analysis.

The problem that we address in this paper is the construction of a family of solutions,
starting from a seed solution of the Lax pair with potential U0 not identically equal to zero, in
order to extend the N -soliton solutions. Thus, we relate the expression of those solutions to
a Grammian whose elements are bilinear forms defined on the space of the wavefunctions
corresponding to a nonzero potential U0 and spectral parameters {λi, i = 1, 2, . . . , N}.
Therefore, we generalize the expression of the N -soliton tau function obtained in [16] by
symmetry reduction of the CKP hierarchy. As an example, we explicitly build theN -parameter
solutions of the KK equation for the potential

U0 = −α
2

1

(x + 1/a)2
(4)

and distinguish the two cases a = 0 and a �= 0.
We also clarify the link established by the relation (3) between SK and KK in specifying

the class of solutions which are involved in this transformation.
The paper is organized as follows. In section 2, the tau function of KK for the extended

N -soliton solution is derived from the NLSF. In section 3, the explicit expressions of the
extended one- and two-soliton solutions are obtained and their behaviours are graphed for
three values of t and two nonzero values of the parameter a. Finally in section 4, we establish
the relationship deduced from the BT (3), between the phases of the solitonic solutions of the
two dual equations SK and KK.

2. The tau function for KK

The KK equation (1) possesses the Lax pair and the Darboux transformation (DT) [17]:

x − Lax :

(
∂3
x + 6

U

α
∂x + 3

Ux

α
− λ

)
ψ = 0 (5)

t − Lax :

(
∂t − 9λ∂2

x +

(
3
Uxx

α
+ 36

U 2

α2

)
∂x − 3

Uxxx

α
− 72

UUx

α2
− 36λ

U

α

)
ψ = 0 (6)

DT : u = U +
α

2
∂2
x log τ τ = ψψxx − 1

2
ψ2
x + 3

U

α
ψ2 τx = λψ2 (7)

with u and U two solutions of (1).
Its auto-BT is [15]

x − BT : Yxx − 3Y 2
x

4Y
+ 3YYx + Y 3 + 6

Vx

α
Y − λ = 0 (8)

t − BT : Yt − 3Yxxxxx − 3

2

[
60Y 3

(
Yx + 2

Vx

α

)
+ 12Y 5 + 10Y

(
Yxxx + 2

Vxxx

α

)

+30Yxx

(
Yx + 2

Vx

α

)
+ 15Yx

(
Yxx + 2

Vxx

α

)
+ 30Y 2Yxx

+60Y

(
Yx + 2

Vx

α

)2

+ 15YY 2
x

]
x

= 0

Y = v − V

α
u = vx U = Vx.

(9)
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Figure 1. The Bianchi diagram associated with the NLSF.

In [14] we derived the NLSF associated with the Bianchi diagram represented in figure 1:
where ({λn−2}, λn−1, λn) corresponds to the set of n particular values (λ1, . . . , λn−2, λn−1, λn)

of the Bäcklund parameter λ.
Defining the transformation

uk = α

2
∂2
x log fk (k = 1, 2, . . . , n) (10)

the NLSF is written as

fn({λn}) = fn−2({λn−2})
∣∣∣∣

fn−1({λn−2},λn−1)

fn−2({λn−2}) Rn({λn−2}, λn−1, λn)

Rn({λn−2}, λn−1, λn)
fn−1({λn−2},λn)
fn−2({λn−2})

∣∣∣∣ (11)

Rn({λn−2}, λn−1, λn) =
∫ x

√(
fn−1({λn−2}, λn−1)

fn−2({λn−2})
)
x

(
fn−1({λn−2}, λn)
fn−2({λn−2})

)
x

dx. (12)

Expression (11) allows us to write explicitly the tau function depending on N distinct para-
meters {λN } as a Gram determinant:

τ (N) ≡ fN = f0 det

[ ∫ x

ψ(λj )ψ(λl) dx

]
1�j,l�N

(13)

where f0 is related to the seed solution U0 by formula (10) and {ψ(λj )} are solution of (5)
and (6) with potential U0 and spectral parameter λj .

When U0 = 0 (f0 = 1) the result (13) has been obtained by symmetry reduction of the
CKP hierarchy [16]. Here we extend its validity to a non zero background potential by iterating
the formula (11) in the following way. Considering the x-derivative of the ratio fp−1/fp−2:(
fp−1({λp−2}, λa)
fp−2({λp−2})

)
x

= fp−1,x({λp−2}, λa)
fp−2({λp−2}) − fp−1({λp−2}, λa)fp−2,x({λp−2})

f 2
p−2({λp−2})

(14)

we eliminate in the right-hand side fp−1({λp−2}, λa) and its x derivative in using (11) for
n ≡ p − 1:(
fp−1({λp−2}, λa)
fp−2({λp−2})

)
x

=
(
fp−2({λp−3}, λa)
fp−3({λp−3})

− fp−3({λp−3})
fp−2({λp−3}, λp−2)

R2
p−1({λp−3}, λp−2, λa)

)
x

. (15)

Taking account of (12) for n ≡ p − 1 this last expression can equivalently be written as(
fp−1({λp−2}, λa)
fp−2({λp−2})

)
x

=
(√(

fp−2({λp−3}, λa)
fp−3({λp−3})

)
x
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− fp−3({λp−3})
fp−2({λp−3}, λp−2)

√(
fp−2({λp−3}, λp−2)

fp−3({λp−3})
)
x

Rp−1({λp−3}, λp−2, λa)

)2

.

(16)

A similar expression to (16) where λa is replaced by λb is also considered:(
fp−1({λp−2}, λb)
fp−2({λp−2})

)
x

=
(√(

fp−2({λp−3}, λb)
fp−3({λp−3})

)
x

− fp−3({λp−3})
fp−2({λp−3}, λp−2)

√(
fp−2({λp−3}, λp−2)

fp−3({λp−3})
)
x

Rp−1({λp−3}, λp−2, λb)

)2

.

(17)

Making the product of the two relations (16) and (17), extracting the square roots of the two
members and integrating with respect to x, we eliminate the remaining square roots by using
expression (12) for respectively n ≡ p and p − 1 and obtain the following relation:

Rp({λp−2}, λa, λb) = Rp−1({λp−3}, λa, λb)
−fp−3({λp−3})
fp−2({λp−2})Rp−1({λp−2}, λa)Rp−1({λp−2}, λb) (18)

which generalizes for arbitrary value of p > 3 the expression obtained for p = 3 in [14].
With the use of (11) and (18), we can then prove the equality between a (N−m)×(N−m)

determinant and a (N −m + 1)× (N −m + 1) determinant:

fm({λm})

×

∣∣∣∣∣∣∣∣∣∣

fm+1({λm},λm+1)

fm(λm)
Rm+2({λm}, λm+1, λm+2) · · · Rm+2({λm}, λm+1, λN)

Rm+2({λm}, λm+1, λm+2)
fm+1({λm},λm+2)

fm({λm}) · · · ...

...
...

...
...

Rm+2({λm}, λm+1, λN) Rm+2({λm}, λm+2, λN) · · · fm+1({λm},λN )
fm({λm})

∣∣∣∣∣∣∣∣∣∣
= fm−1({λm−1})

×

∣∣∣∣∣∣∣∣∣∣

fm({λm−1},λm)
fm−1({λm−1}) Rm+1({λm−1}, λm, λm+1) · · · Rm+1({λm−1}, λm, λN)

Rm+1({λm−1}, λm, λm+1)
fm({λm−1},λm+1)

fm−1({λm−1}) · · · ...

...
...

...
...

Rm+1({λm−1}, λm, λN) Rm+1({λm−1}, λm+1, λN) · · · fm({λm−1},λN )
fm−1({λm−1})

∣∣∣∣∣∣∣∣∣∣
.

(19)

We now consider (11) and make the identification n ≡ N . By applying (19) N − 2 times we
obtain

F({λN }) = f0

∣∣∣∣∣∣∣∣∣

f1(λ1)

f0
R2(λ1, λ2) · · · R2(λ1, λN)

R2(λ1, λ2)
f1(λ2)

f0
· · · R2(λ2, λN)

...
...

...
...

R2(λ1, λN) R2(λ2, λN) · · · f1(λN )

f0

∣∣∣∣∣∣∣∣∣
(20)

where f1(λj ), j = 1, . . . , N is a one-parameter tau function associated with background U0.
Considering the DT (7) with U ≡ U0 we have that

u(λj ) = α

2
∂2
x log

[
f0

∫ x

ψ2(λj )

]
≡ α

2
∂2
x log f1(λj ) (21)
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with ψ(λj ) solution of (5) for U ≡ U0 and λ ≡ λj .
Therefore

f1(λj )

f0
=

∫ x

ψ2(λj ) (22)

which proves that (20) is identical to (13).

3. Extended solitons for KK

We here construct new solutions of KK starting from (4) which corresponds to f0 = 1 + ax.
The general solution of (5) and (6) with spectral parameter λ, becomes

ψ(λ) = (1 + ax)−1(Ae−pax−9a5p5t (1 + p + pax) + Be−rax−9a5r5t (1 + r + rax)

+Ce−sax−9a5s5t (1 + s + sax)) (23)

where a3p3 = a3r3 = a3s3 = −λ and A,B,C are arbitrary constants.
With the use of (13), it is now easy to construct extended N -soliton solutions for KK. We

only give explicitly the one- and two-parameter solutions.
Setting C = 0, the expression (21) of the one-parameter solution becomes

u(k) = α

2
∂2
x log

[
1 + ax + a

3 +
√

3i

k
+ 4

(
1 + ax + a

√
3i

k

)
ekx−k

5t+δ

+

(
1 + ax + a

−3 +
√

3i

k

)
e2(kx−k5t+δ)

]
(24)

δ = Br

A(p + r)
(25)

where k = a(p − r) and i2 = −1.
Its asymptotic behaviour (|t | � 1) is

(i) in the reference frame of the soliton ξ = x − k4t + δ/k:

Re (u(k)) ∼ α

2
∂2
x log[1 + 4ekξ + e2kξ ] (26)

which corresponds to a moving solitary wave with speed v = k4;
(ii) outside the reference frame of the one soliton, for t → ±∞,

f1(k) ∼
√

3

k
(i ±

√
3) +

1

a
+ x (27)

Re (u(k)) ∼ α

2

3/k2 −X2

(3/k2 +X2)2
X = ±3

k
+

1

a
+ x (28)

which corresponds to a static bell-shaped wave.

With the two-parameter tau function

f2(λ1, λ2) = f0

∣∣∣∣
∫ x
ψ2(λ1)

∫ x
ψ(λ1)ψ(λ2)∫ x

ψ(λ1)ψ(λ2)
∫ x
ψ2(λ2)

∣∣∣∣ (29)

the extended two-soliton solution becomes

u(k1, k2) = α

2
∂2
x log f2(k1, k2) (30)

f2(k1, k2) = 1 + ax + a
(k1 + k2)(

√
3i + 3)

k1k2
+ 4

(
1 + ax + a

(
√

3i + 3)

k2
+ a

√
3i

k1

)
eθ1
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+4

(
1 + ax + a

√
3i + 3

k1
+ a

√
3i

k2

)
eθ2 +

(
1 + ax + a

√
3i + 3

k2
+ a

√
3i − 3

k1

)
e2θ1

+

(
1 + ax + a

√
3i + 3

k1
+ a

√
3i − 3

k2

)
e2θ2

+8B12

(
1 + ax + a

√
3i(k1 + k2)

k1k2

)
eθ1+θ2

+4A12

((
1 + ax + a

√
3i

k2
+ a

√
3i − 3

k1

)
e2θ1+θ2

+

(
1 + ax + a

√
3i

k1
+ a

√
3i − 3

k2

)
eθ1+2θ2

)

+A2
12

(
1 + ax + a

(
√

3i − 3)(k1 + k2)

k1k2

)
e2(θ1+θ2) (31)

θj = kjx − k5
j t + δ̃j j = 1, 2

δ̃j = Bj(rj − pl)qj (pj + pl)

Aj (rj + pl)(pj + rj )(pj − pl)
j, l = 1, 2 j �= l (32)

Ajl = (kj − kl)
2(k2

j − kj kl + k2
l )

(kj + kl)2(k2
j + kj kl + k2

l )
(33)

Bjl = 2k4
j − k2

j k
2
l + 2k4

l

(kj + kl)2(k2
j + kj kl + k2

l )
j �= l. (34)

Outside the reference frames of the solitons characterized by k1 and k2 we have for t ± ∞:

f2(k1, k2) ∼
√

3(k1 + k2)

k1k2
(i ±

√
3) +

1

a
+ x (35)

Re (u(k1, k2)) ∼ α

2

3(k1 + k2)
2/(k2

1k
2
2)−X2

(3(k1 + k2)2/(k
2
1k

2
2) +X2)2

X = ±3(k1 + k2)

k1k2
+

1

a
+ x. (36)

Note that setting a = 0 in (24) and (30) we recover the usual expressions for the one- and
two-soliton solutions of KK [14].

In figures 2–7 we draw the behaviour of the extended one- and two-solitons for two values
of the parameter a, respectively a = 0.5 (dotted curve) and a = 500 (full curve).

4. Miura transformation between SK and KK

With the seed solution f̃0 = 1 + ax, equation (3) is satisfied either for f0 = 1 or (1 + ax)2.
This last expression corresponds to a solution of SK:

uSK = − 2αa2

(1 + ax)2
(37)

which belongs to the second family of movable poles possessing one negative Fuchs index [15].
This solution cannot be iterated for a �= 0, therefore it is not taken into account.

From the bilinear form of SK it is well known [8] that one can write the N -soliton tau
function as

fN =
∑

µj ,µl=0,1

exp

( N∑
j=1

µjθj +
∑

1�j�l
µjµl logAjl

)
(38)
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Figure 2. Real and imaginary part of u(k = 1) at t = −50.
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Figure 3. Real part and imaginary part of u(k = 1) at t = 0.
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Figure 4. Real part and imaginary part of u(k = 1) at t = 50.
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Figure 5. Real part and imaginary part of u(k1 = 1, k2 = 1.2) at t = −50.



2522 C Verhoeven and M Musette

-40 -20 20 40

0.05

0.1

0.15

0.2

0.25

-40 -20 20 40

-0.04

-0.02

0.02

0.04

Figure 6. Real and imaginary part of u(k1 = 1, k2 = 1.2) at t = 0.
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Figure 7. Real and imaginary part of u(k1 = 1, k2 = 1.2) at t = 50.

where θj = kjx − k5
j t + δj and Ajl defined by (33).

To be satisfied, the BT (3) imposes some relationship between the phases of the soliton
solutions of SK and KK, such that to a regular (singular) soliton solution of SK corresponds a
singular (regular) solution of KK. This also holds for extended soliton solutions of KK.

For example, considering in (3) the two-soliton tau function of SK and KK:

f = 1 + ε1eθ1 + ε2eθ2 + ε1ε2A12eθ1+θ2 εj = eδj (39)

f̃ = 1 + 4(ε̃1eθ1 + ε̃2eθ2) + ε̃2
1e2θ1 + ε̃2

2e2θ2 + ε̃1ε̃2B12eθ1+θ2

+4A12(ε̃1ε̃
2
2eθ1+2θ2 + ε̃2

1 ε̃2eθ2+2θ1) + ε̃2
1 ε̃

2
2A

2
12e2(θ1+θ2) ε̃j = eδ̃j (40)

the following relation between the phases appears:

ε̃j = −εj j = 1, 2 (41)

and it remains valid if f̃ is replaced by the extended two-soliton solution (30).
The relation (41) is mainly determined by the coefficient in (3) of eθj , j = 1, 2, which

must be equal to zero. Therefore, it is easy to check that it remains valid for j = 1, . . . , N
with N arbitrary.
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